DNA Arrays in Clinical Oncology: Promises and Challenges
Abstract
Cancer is a complex genetic disease characterized by the accumulation of multiple molecular alterations. Current diagnostic and prognostic classifications, based on clinical and pathologic factors, are insufficient to reflect the whole clinical heterogeneity of tumors. Most current anticancer agents do not differentiate between cancerous and normal cells, leading sometimes to disastrous adverse effects. Recent advances in human genome research and high-throughput molecular technologies make it possible finally to tackle the molecular complexity of malignant tumors. With DNA array technology, mRNA expression levels of thousands of genes can be measured simultaneously in a single assay. Oncology is benefiting on multiple fronts. Gene expression profiles are revealing new biologically and clinically relevant tumor subclasses previously indistinguishable and are identifying new diagnostic and prognostic biomarkers as well as new potential therapeutic targets. Here, we review the technology and present clinical applications for which promising results have been obtained. Finally, we discuss issues that must be resolved in the near future to allow DNA arrays to translate into benefits for cancer patients. (Lab Invest 2003, 83:305–316).