FLT3 signaling inhibition abrogates opioid tolerance and hyperalgesia while preserving analgesia
Résumé
Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model. We found that chronic morphine treatment increases FLT3 and MOR co-expression, and that inhibiting FLT3 represses MOR-induced hyperactivation of the cyclic adenosine monophosphate (cAMP) signaling pathway, mitigating maladaptive excitatory processes engaged after chronic morphine treatment. Furthermore, in postsurgical or inflammatory models of chronic pain, co-administering morphine with a FLT3specific inhibitor not only prevents or suppresses tolerance and hyperalgesia but also potentiates the analgesic efficacy of morphine, without aggravating other morphine-induced adverse effects. Our findings suggest that pairing morphine with FLT3 inhibitors could become a promising avenue for chronic pain management to safely harness the power of opioids, without the risk of dose escalation. By enhancing morphine analgesic potency through FLT3 inhibition, this approach could minimize opioid dosage, thereby curtailing the risk of addiction and other opioid-related side effects.
While opioid analgesics stand unrivaled in managing severe pain, particularly in acute and cancer-related scenarios, their long-term employment in treating other chronic pain disorders has encountered escalating scrutiny. Long-term opioid therapies are inadequate due to their declining long-term efficacy 1 linked to the onset of analgesic tolerance leading to dose escalation, paradoxical hyperalgesia 2-4 , and other harmful side effects, such as addiction and life-threatening respiratory depression 5 . Current pharmaceutical strategies fall short of
Domaines
Sciences du Vivant [q-bio]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |