Bootstrap Tests for Overidentification in Linear Regression Models - Aix-Marseille Université Access content directly
Journal Articles Econometrics Year : 2015

Bootstrap Tests for Overidentification in Linear Regression Models


We study the finite-sample properties of tests for overidentifying restrictions in linear regression models with a single endogenous regressor and weak instruments. Under the assumption of Gaussian disturbances, we derive expressions for a variety of test statistics as functions of eight mutually independent random variables and two nuisance parameters. The distributions of the statistics are shown to have an ill-defined limit as the parameter that determines the strength of the instruments tends to zero and as the correlation between the disturbances of the structural and reduced-form equations tends to plus or minus one. This makes it impossible to perform reliable inference near the point at which the limit is ill-defined. Several bootstrap procedures are proposed. They alleviate the problem and allow reliable inference when the instruments are not too weak. We also study their power properties.
Fichier principal
Vignette du fichier
econometrics-03-00825.pdf (579.56 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Licence : CC BY - Attribution

Dates and versions

hal-01456100 , version 1 (21-06-2023)





Russell Davidson, James G. Mackinnon. Bootstrap Tests for Overidentification in Linear Regression Models. Econometrics, 2015, 3 (4), pp.825--863. ⟨10.3390/econometrics3040825⟩. ⟨hal-01456100⟩
50 View
1 Download



Gmail Facebook Twitter LinkedIn More