Conditions for anti-Zeno effect observation in free-space atomic radiative decay
Résumé
Frequent measurements can modify the decay of an unstable quantum state with respect to the free dynamics given by Fermi's golden rule. In a landmark article, Nature 405, 546 (2000), Kofman and Kurizki concluded that in quantum decay processes, acceleration of the decay by frequent measurements, called the quantum anti-Zeno effect (AZE), appears to be ubiquitous, while its counterpart, the quantum Zeno effect, is unattainable. However, up to now there have been no experimental observations of the AZE for atomic radiative decay (spontaneous emission) in free space. In this work, making use of analytical results available for hydrogen-like atoms, we find that in free space, only non-electric-dipolar transitions should present an observable AZE, revealing that this effect is consequently much less ubiquitous than first predicted. We then propose an experimental scheme for AZE observation, involving the electric quadrupole transition between D 5/2 and S 1/2 in the heaviest alkali-earth ions Ca + , Sr + or Yb +. The proposed protocol is based on the STIRAP technique which acts like a dephasing quasi-measurement.
Domaines
Physique Quantique [quant-ph]
Fichier principal
AZE_Ions_revised_180330.pdf (536.09 Ko)
Télécharger le fichier
lassalle_figure1a.pdf (31.86 Ko)
Télécharger le fichier
lassalle_figure1b.pdf (30.88 Ko)
Télécharger le fichier
lassalle_figure2.pdf (32.48 Ko)
Télécharger le fichier
lassalle_figure3.pdf (28.66 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|