The MIT Bag Model as an infinite mass limit - Aix-Marseille Université Access content directly
Journal Articles Journal de l'École polytechnique — Mathématiques Year : 2019

The MIT Bag Model as an infinite mass limit


The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $\Omega\subset\R^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $\Omega$ with the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/\sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $\partial\Omega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
Fichier principal
Vignette du fichier
ALMR19_8May.pdf (487.99 Ko) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-01863065 , version 1 (28-08-2018)
hal-01863065 , version 2 (24-05-2019)


Attribution - NonCommercial - ShareAlike



Naiara Arrizabalaga, Loïc Le Treust, Albert Mas, Nicolas Raymond. The MIT Bag Model as an infinite mass limit. Journal de l'École polytechnique — Mathématiques, 2019, 6, pp.329-365. ⟨10.5802/jep.95⟩. ⟨hal-01863065v2⟩
443 View
199 Download



Gmail Facebook Twitter LinkedIn More