Computation of Activation Probabilities in the Independent Cascade Model - Aix-Marseille Université Access content directly
Conference Papers Year : 2018

Computation of Activation Probabilities in the Independent Cascade Model

Abstract

Based on the concepts of word-of-mouth effect and viral marketing, the diffusion of an innovation may be triggered starting from a set of initial users. Estimating the influence spread is a preliminary step to determine a suitable or even optimal set of initial users to reach a given goal. In this paper, we focus on a stochastic model called the Independent Cascade model, and compare a few approaches to compute activation probabilities of nodes in a social network, i.e., the probability that a user adopts the innovation. In the paper, first we propose the Path Method which computes the exact value of the activation probabilities but it has high complexity. Second an approximated method, called SSS-Noself, is obtained by modification of the existing SteadyStateSpread algorithm, based on fixed-point computation, to achieve a better accuracy. Finally an efficient approach, also based on fixed-point computation, is proposed to compute the probability that a node is activated though a path of minimal length from the seed set. This algorithm, called SSS-Bound-t algorithm, can provide a lower- bound for the computation of activation probabilities.
Fichier principal
Vignette du fichier
CODIT2018-Wenjing Yang-205.pdf (321.4 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01997464 , version 1 (15-03-2022)

Identifiers

  • HAL Id : hal-01997464 , version 1

Cite

Wenjing Yang, Leonardo Brenner, Alessandro Giua. Computation of Activation Probabilities in the Independent Cascade Model. 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Apr 2018, Thessaloniki, Greece. pp.791-797. ⟨hal-01997464⟩
73 View
48 Download

Share

Gmail Facebook X LinkedIn More