Article Dans Une Revue Traitement du Signal Année : 2020

Kinship Verification Through Facial Images Using CNN-Based Features

Résumé

The use of facial images in the kinship verification is a challenging research problem in soft biometrics and computer vision. In our work, we present a kinship verification system that starts with pair of facial images of the child and parent, then as a final result is determine whether two persons have a kin relation or not. our approach contains five steps as follows: (i) the face preprocessing step to get aligned and cropped facial images of the pair (ii), extracting deep features based on the deep learning model called Visual Geometry Group (VGG) Face, (iii) applying our proposed pair feature representation function alongside with a features normalization, (iv) the use of Fisher Score (FS) to select the best discriminative features, (v) decide whether there is a kinship or not based on the Support Vector Machine (SVM) classifier. We conducted several experiments to demonstrate the effectiveness of our approach that we tested on five benchmark databases (Cornell KinFace, UB KinFace, Familly101, KinFace W-I, and KinFace W-II). Our results indicate that our system is robust compared to other existing approaches.
Fichier principal
Vignette du fichier
37.01_01.pdf (1.55 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02517794 , version 1 (24-03-2020)

Identifiants

Citer

Abdelhakim Chergui, Salim Ouchtati, Sébastien Mavromatis, Salah Eddine Bekhouche, Mohamed Lashab, et al.. Kinship Verification Through Facial Images Using CNN-Based Features. Traitement du Signal, 2020, 37 (1), pp.1-8. ⟨10.18280/ts.370101⟩. ⟨hal-02517794⟩
425 Consultations
1157 Téléchargements

Altmetric

Partager

More