Optimal shock‐based maintenance policy for a system in a dynamic environment
Résumé
In this article, we consider a single-unit system that operates in a dynamic environment and is subject to shocks. Shocks only affect the system (nonlethal shock) and do not cause sudden failure, and arrive according to a counting process. Both homogeneous and nonhomogeneous Poisson processes are considered for shocks arrival modeling. In order to model the dynamic environment and consider shock effects, a multiplicative failure rate model is proposed. Both corrective maintenance and shock-based preventive maintenance are considered, and two policies are proposed. In the first proposed policy, the system is replaced by a new one upon a failure or based on the predetermined number of shocks, whichever comes first, while the second proposed policy extends the first one by considering an imperfect preventive repair at each inspection time. The inspection times are periodic and the interinspection interval is considered as a decision variable. The proposed policies are optimized according to long-run cost rate criteria. Numerical examples illustrate the applicability and efficiency of the proposed policies.
Fichier principal
Appl Stoch Models Bus Ind - 2022 - Misaii - Optimal shock‐based maintenance policy for a system in a dynamic environment.pdf (2.41 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|