Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra - Aix-Marseille Université
Article Dans Une Revue Communications Biology Année : 2023

Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra

Nicole Burkert
  • Fonction : Auteur
Shoumik Roy
Max Häusler
  • Fonction : Auteur
Dominik Wuttke
  • Fonction : Auteur
Sonja Müller
  • Fonction : Auteur
Johanna Wiemer
  • Fonction : Auteur
Helene Hollmann
  • Fonction : Auteur
Marvin Oldrati
  • Fonction : Auteur
Julia Benkert
  • Fonction : Auteur
Michael Fauler
  • Fonction : Auteur
Johanna Duda
  • Fonction : Auteur
Christina Pötschke
  • Fonction : Auteur
Moritz Münchmeyer
  • Fonction : Auteur
Rosanna Parlato
  • Fonction : Auteur
Birgit Liss

Résumé

Abstract Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson’s and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Fichier principal
Vignette du fichier
2023_Burkert_CommBiol.pdf (5.1 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04302548 , version 1 (23-11-2023)

Identifiants

Citer

Nicole Burkert, Shoumik Roy, Max Häusler, Dominik Wuttke, Sonja Müller, et al.. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Communications Biology, 2023, 6 (1), pp.1146. ⟨10.1038/s42003-023-05441-6⟩. ⟨hal-04302548⟩
29 Consultations
26 Téléchargements

Altmetric

Partager

More